

Alternative methods of semen preservation: A pig model for endangered species

Umaporn Rungroekrit

Clinic for Obstetrics Gynecology Andrology and Artificial Insemination in Domestic Animals Faculty of Veterinary Medicine, Mahanakorn University of Technology

28.05.2015

Contents

Materials and Methods Results

A high valuable animal suddenly died and had no preserved semen !

"Please, help me doctor!" "How can I get a descendant from my dead animal ?"

There are less than 250 wild Riverine rabbits left in South Africa

Bunolagus monticularis; Red list (IUCN): critically endangered species

http://www.edgeofexistence.org/mammals/species_info.php?id=3

Tuaklom † 25.06.2010

Some methods for desiccated semen preservation

Freeze-drying

(Bhowmick et al. 2003, McGinnis et al. 2005)

Air-drying (Imoedamhe 2005) مر

Requirement: drying chamber, gas releasing

regulator, electric fan and larminar flow chamber

Some methods for desiccated semen preservation

Heat-drying (Lee and Niwa 2006, Rungroekrit et al. 2012, Lee et al. 2013)

Flame-drying (Rungroekrit et al. 2013)

Simple semen preservation method

Less equipment requirement

- Portable stuffs
 - Preserved sperm can be stored at
 - ambient temperature for short- and/or

long- term

Goal

Heat- and Flame-drying as an alternative

methods (simple procedure and possible to use under extreme condition area)

Fertilization ability investigation using ICSI

Investigation of sperm DNA fragmentation using Halomax[®] test kit

In vitro maturation

- ≻Cumulus oocyte complexes (COCs) ≥ 3 layers
- IVM in mTCM 199 (insulin, L-glutamine, FCS, gentamicin; stock medium) and eCG
- Maturation period: 44 46 h (39 °C, 5 % CO₂, humidified atmosphere)

Sperm preparation: Heat-drying

Sperm preparation: Flame-drying

Dried sperm samples packaging and storage

Dried sperm sample rehydration

Sperm DNA fragmentation assessment

Fertilization ability testing using ICSI

Micromanipulation unit

Intracytoplasmic sperm injection

28.05.2015

Sperm-injected oocytes activation and *in vitro* culture

10 % ethanol (2 min) in mTCM 199

/ mTCM 199 + 10 µg/ml CHX (24 h)

staining with aceto-orcein

Sperm DNA fragmentation by Halomax[®] test kit

Results

Percent of DNA fragmentation index (% DFI)

Spermatozoa	Storage	No. of	Total no. of examined	% DFI
	duration	replicates	spermatozoa	(mean± SD)
Ejaculated semen (control gr.)		4	1,200	1.5 ± 0.4^{a}
HD 50 °C 45 min	short-term	4	1,200	59.66 ± 2.0°
	long-term	4	1,200	$68.66 \pm 1.9^{c^*}$
HD 56 °C 45 min	short-term	4	1,200	58.17 ± 3.8°
	long-term	4	1,200	64.58 ± 3.1 ^{c*}
HD 90 °C 45 min	short-term	4	1,200	75.0 ± 4.0^{d}
	long-term	4	1,200	82.66 ± 2.8^{d}
HD 120 °C 20 min	short-term	4	1,200	1.25 ± 0.7 ^a
	long-term	4	1,200	2.33 ± 0.2 ^{a*}
FF	short-term	4	1,200	38.0 ± 4.0^{E}
	long-term	4	1,200	$50.58 \pm 4.3^{e^*}$
FSW	short-term	4	1,200	30.25 ± 3.5^{F}
	long-term	4	1,200	34.0 ± 3.2^{f}

HD: Heat-dried semen samples, FF: Flame-dried sperm rich fraction, FSW: Flame-dried swim up semen, *P*<0.05

Results

Fertilization criteria

Two polar bodies, formation of 2 pronuclei, sperm tail and disappearence of sperm head, bar = $20 \ \mu m$

Results

Percent of fertilized oocytes after ICSI

Experimental group	Storage duration	No. of examined oocytes	No. (%) of fertilized oocytes
Ejaculated semen (control gr.)		140	26 (18.6)
HD 50 °C 45 min	short-term	140	20 (14.3)
	long-term	124	7 (5.7)
HD 56 °C 45 min	short-term	122	21 (17.2)
	long-term	103	9 (8.7)
HD 90 °C 45 min	short-term	135	15 (11.1)
	long-term	142	22 (15.5)
HD 120 °C 20 min	short-term	102	0 (0)
	long-term	122	0 (0)
FF	short-term	128	14 (10.9)
rr	long-term	126	10 (7.9)
FSW	short-term	115	12 (10.4)
	long-term	130	15 (11.5)

HD: Heat-dried semen samples, FF: Flame-dried sperm rich fraction, FSW: Flame-dried swim up semen, 5-7 replications per sample

Conclusions

Heat- and Flame-dried boar semen have an ability to fertilize porcine oocytes by using ICSI technique

Long-term storage increased % DFI of dried samples

Further experiments need to optimize the protocols in term of sperm DNA damage protection, storage method, and rehydration procedure to improve the fertilization rate

Thank you for your attention

